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ABSTRACT 	

Studies on the spatiotemporal distribution monitoring of light fishing fleets are limited 
due to extensive study area, data availability, dynamic distributions, limited monitoring 
technology, and perception of the fishers. This study aims to monitor and estimate the 
density of light fishing fleets, representing the centre of fishing areas. Using the visible 
infrared imaging radiometer suite of boat detection data combined with actual fishing data, 
the pattern of spatiotemporal distribution of light fishing fleets was analysed, displayed 
with the variations in sea surface temperature and chlorophyll-a concentrations. This 
study was carried out at west Sumatera waters. The actual fishing data, light fishing fleets 
data, and environment parameter data were collected in 2014-2018. The calculation of 

the geographical distribution was carried 
out using the geographical information 
system models with four spatial indicators, 
i.e., central tendency, spatial dispersion, 
directional dispersion, and directional 
trends. The results showed various patterns 
and behaviours on light fishing fleets 
spatial distribution. We also revealed the 
spatiotemporal pattern dynamic of the 
geographic distribution of light fishing 
fleets in the west Sumatera waters. The 
distribution pattern was random compared 
to the sea surface temperature distribution. 
On the other hand, it was quite centralized 
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following the chlorophyll-a concentration. The distribution of light fishing fleets was 
dominant in the area with high chlorophyll-a concentration.

Keywords: CFAs, light fishing fleets, spatial indicators, spatiotemporal analysis 

INTRODUCTION

Monitoring and mapping of fishing activities are the critical components in the planning 
and management of fisheries and marine resources (Booth, 2000). Fishing location data 
have been used for a long time to identify and delineate fishing areas (Jennings & Lee, 
2012), assisting  the fisheries resource assessments (Booth 2000; Tidd et al., 2017), 
estimating the fishing efforts (Parnell et al., 2010) and evaluating the impact of external 
factor interventions in marine and fisheries resource management (Cabral et al., 2016). 
However, the monitoring and mapping of the fishing activities still face many problems in 
Indonesia, such as high cost in fishing data collection, low quality of fishing data, and the 
perception of fishers about fishing data. Many Southeast Asian countries have high fishing 
densities (N boat km-2) (Stewart et al., 2010), while the majority of their fishing fleets have 
not been equipped with a vessel monitoring system (VMS) (Kroodsma et al., 2018)

Night-time satellite imagery provides an alternative source of spatial data in marine 
and fisheries studies, especially for vessels using lights as fish aggregating devices (FADs) 
to attract fish (Kroodsma et al., 2018). Elvidge et al.  (2015) stated the potential of VBD 
(VIIRS Boat Detection) as the boat location extracted from visible infrared imaging 
radiometer suite, day/night band (VIIRS DNB) image data to provide an advance solution 
of vessel monitoring activities. The light intensity used in this fishing method allows it to 
be identified through the night-time image (Geronimo et al., 2018).

Various studies can be carried out by utilizing night-time imaging data such as light 
pollution mapping in marine protected areas (MPA) (Davies et al., 2014; Davies et al., 
2016), offshore drilling mapping (Elvidge et al., 2009; Elvidge et al., 2016), vessel detection 
and monitoring (Elvidge et al., 2015; Straka et al., 2015), the suitability of fish resource 
habitats mapping (Kiyofuji & Saitoh, 2004), estimation of fishing effort and intensity for 
single fish species (Saitoh et al., 2010), and mapping predictions of potential fishing zones 
(PFZs) (Kiyofuji & Saitoh, 2004; Saitoh et al., 2010; Syah et al., 2016; Setiawati & Tanaka, 
2017; Zhang et al., 2017; Geronimo et al., 2018).

In some studies, the night-time imagery was compared to the VMS data to understand 
the relationship between the fishing gears and the light intensity of the image better. The 
highest light intensity associates with squid lift fishing gear and small purse seine pelagic 
(Geronimo et al., 2018), which  subsequently associates with FADs for hand line fishing, 
boat lift net and set lift net. It assumes that the VBD data can delineate fishing grounds 
for specific fishing gears. Indirectly, the fleet distribution always connects with the spatial 
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distribution of fish. The spatial distribution of fish is a complex phenomenon controlled 
by the interactions between various oceanographic and environmental parameters, such as 
sea surface temperature (SST), sea surface height (SSH), and chlorophyll-a concentration, 
monitored remotely using satellites (Syah et al., 2016; Setiawati & Tanaka, 2017; Zainuddin 
2011). Furthermore, dissolved oxygen, upwelling, salinity, and current can also influence 
fish distribution

Geographic information system (GIS) technology is specifically designed to visualize, 
manipulate, manage, and analyse various reference data to determine relationships, linkages, 
patterns, and trends, which may not be directly proven by the existing data sources (Fischer 
& Getis, 2010). Development devices in GIS, such as spatial statistical analysis methods, 
make the researcher easier to study and understand the variation and exploration process 
of marine and fisheries resources in the spatiotemporal domains (Pierce et al., 2002).

Many studies have utilized the GIS in fisheries science and fishing fleets monitoring in 
the management aspects (Pierce et al., 2002; Palenzuela et al., 2004; Riolo 2006; Jayaraman 
et al., 2013) including marine area and fisheries planning (Dineshbabu et al., 2014), 
modelling the relationship of environmental parameters and fish distribution  (Lan et al., 
2013; Lumban-Gaol et al., 2015; Lan et al., 2017; Nurdin et al., 2017). In this study, the 
GIS-based analysis focused on analysing the light fishing fleets density, the spatiotemporal 
distribution estimations, and the relationship between environmental parameters and the 
spatiotemporal distribution of light fishing fleets.

The objectives of this study are: (1) to monitor the light fishing fleets density using 
VBD and actual fishing data, (2) estimate and observe the pattern of the spatiotemporal 
distribution of light fishing fleets in the west Sumatera waters (WSW) against SST and 
chlorophyll-a concentrations. The results are expected to provide information on new 
approaches for monitoring light fishing fleets and assist the decision makers in managing 
fisheries resources in WSW.

MATERIAL AND METHODS

Study Area

This research was conducted in the west Sumatera waters (WSW). The WSW is the 
part of the Republic of Indonesia Fisheries Management Area named WPP RI 572. 
Characteristically, the WSW is slightly different compared to the South Java Sea (SJS). 
Upwelling occurs in SJS during the southeast monsoon and also affected by the Indonesian 
current which flows through Sunda Strait and carries rich nutrients from Java Sea. Our 
study area is shown in Figure 1.
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Fisheries Data
The actual light fishing fleet data were collected from the daily logbook of hand line fishing 
boats in 2014-2018 within various gross tonnages (GT). The hand line fishing is a simple 
fishing gear consisting of fishing lines, snap, connectors, and hooks, and generally used 
for demersal fishery (Mulyadi et al., 2015). The actual fishing fleet data were filtered and 
selected based on the attributes needed in this study, as shown in Table 1. Furthermore, 
the data were converted in the GIS software and re-filtered to ensure a clean outliers 
fishing point. The data were also compiled in GIS software to observe the spatiotemporal 
distribution. The actual fishing fleet data were overlaid with the VBD density to determine 
whether VBD data are representative of actual data or not. The aim of overlaying data was 
to identify the CFAs in the WSW. Flow chart analysis of fishing fleet data can be seen in 
Figure 2.

Table 1
The actual fishing data used in this study

No Lon Lat (n) (w) (t) day month year
1 99.45 -1.26 1 50 38 2 1 2016
2 99.35 -1.32 1 46 49 3 1 2016
3 99.44 -1.42 1 71 49 4 1 2016
4
Noi

99.47
Loni

-1.46
Lati

7
ni

390
wi

49
ti

5
dayi

1
monthi

2016
yeari

Note: n = total fishing catch, w = weight of fishing catch, t = fishing trip
Source: Daily logbook datasheet of Bungus Fishing Port

Figure 1. Area of Interest (AOI) in West Sumatera Waters (WSW)
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Figure 2. Flowchart of hand line actual fishing data analysis

VIIRS Boat Detection Data

VIIRS is the primary imager on Suomi National Polar Partnership (SNPP) that has been 
successfully launched in 2011. The VIIRS DNB collects low light imaging data with 45 
times smaller pixel footprint than the OLS. One of the initial products of VIIRS DNB  is 
VBD data, known as boat location that detected from present of lights intensity in the ocean 
(Elvidge et al., 2015). The light fishing fleets data were extracted from the VBD data. Those 
data were downloaded from the U.S National Oceanic and Atmospheric Administration 
National Centre for Environmental Information’s Earth Observation Group website (www. 
ngdc. noaa.gov/eog/viirs/downloadphil.boat.html) from 2014 to 2018. Each VBD datum 
represents pixels which are suspected to be boat lights in the VIIRS DNB image (Elvidge 
et al., 2015; Cozzolino & Lasta, 2016; Elvidge et al., 2018).

The VBD data files contained information on the ship’s suspect pixel geolocation, such 
as radiances value (nanoWatts/cm2/sr), date, image acquisition time, image data processing 
date, and ship detection quality (quality flag) (Geronimo et al., 2018). Each detection quality 
information is represented by these symbols, QF_1 (strong boat detection), QF_2 (weak 
boat detection), QF_3 (blurry boat detection), QF_8 (recurring lights) and QF_10 (weak 
and blurry lights/gas flares) symbols (Elvidge et al., 2015). In this study, only data with 
QF_1 criteria were used for further analysis to represent ships with high light intensity, 
undoubtedly related to the number of FADs (Table 2). The data warehousing process was 
carried out in GIS platform using several toolboxes. 
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Generally, the procedures were applied for this study is pre-processing VBD data and 
pattern identification. Pre-processing activity includes conversion, query, and delineation 
area of interest. We performed “point to raster” tools in the pattern identification stage to 
create annual VBD presence raster with 700 x 700 m2 resolution. Kernel density was also 
performed to identify the light fishing fleets spatial pressure. Based on density information 
we clustered the density by visual interpretation and manual digitation to identified CFAs. 
The density clustering process also based on field information of dominant traditional PFZs 
at study area. CFAs location and identity determined by local spatial knowledge, and then 
we calculated the total area. To obtain information on the dynamics of the geographical 
distribution of light fishing fleets we also performed the “spatial statistics tool”. Monthly 
light fishing fleets position data per season then overlaid with spatial analysis results and 
environmental parameters namely SST and chlorophyll-a concentration. The flow chart 
for VBD data processing is shown at Figure 3.

Source: Statistic report of Bungus Fishing Port (2017) and Geronimo et al. (2018)

No Fishing Gears Target Species Light Description

1 Purse seine Tuna, Mackerel Tuna, 
Skipjack, Mackerel

HPIT Spotlights with halogen bulb 
1000-5000 watt/ 15-40 bulbs or FADs, 
depending on the ship size

2 Hand Line
Yellow Fin Tuna, Big 
Eye Tuna, Demersal 
Fishes

HPIT Spotlights with halogen bulb 
1000-5000 watt/10-20 bulbs or FADs

3 Boat lift net Skipjack, Mackerel 
Tuna, Mackerel 

HPIT Spotlights with halogen bulb 
1000-5000 watt/10-30 bulbs or FADs; 
sometimes, underwater lights are also 
used with a capacity of 500-1000 
watts/2-8 units or FADs

4 Set lift net
Anchovies, Squid, 
other little pelagic 
fish

LED or metal halide bulbs with size 
30-100 watt/5-20 bulbs or FADs, 
sometimes, underwater modified lights 
are also used.

Table 2 
Dominant fishing gears using light as Fish Aggregating Devices (FADs) in the Western Indian Ocean

Spatiotemporal Analysis of Light Fishing Fleets Distribution Pattern

The calculation of the geographical distribution was carried out using the GIS-based model 
to determine 4 spatial indicators, namely central tendency, spatial dispersion, directional 
dispersion, and directional trends (Figure 3) (Fischer & Getis, 2010). GIS based model 
applied in this study is spatial statistical analysis (Fischer & Getis, 2010; Perzia et al., 2016). 
It is a well-known spatial modelling because of flexibility in data storage and management, 
easy to understand both analytical and technical, and applicable. The spatial tendencies 
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were calculated using the “mean centre tool” which is the distribution geographical centre 
calculation of the light fishing fleets, the average x, and y coordinates of the total VBD 
coordinates in the study area. Changes in the central tendency reflect variations in the 
distribution of light fishing fleets both spatially and temporally (Perzia et al., 2016).  

The spatial dispersion was calculated using a “standard distance tool” representing 
the degree where the spatial fishing fleets are spatially concentrated or distributed around 
the central tendency. The spatial dispersion maps is represented by circles with a radius 
equal to 95% of the total VBD data as input in the study area. The radius value of the circle 
was assumed as the concentration level of the spatial distribution. The greater of the circle 
radius value, the more dispersed the light fishing fleet spatial distribution will be or vice 
versa (Perzia et al., 2016).

Directional dispersion and directional trend were calculated using the “standard 
deviational ellipses tool.” The directional scattering calculated the standard distance 
from the direction of the x and y coordinates distributions that were represented by oval 
visualization containing 95% of the total data input. Thus, the extent of light fishing fleet 
distribution in an area was determined. On the other hand, directional trends stated the 
direction degree of the distribution data input. The directional trends are representations 
of extending clockwise axis rotation starting at mid-day point. Generally, the description 
and equations of the spatial indicators that performed in this study is shown in Table 3.

Central tendency was average of total x (longitude) and y (latitude) coordinates in 
the study area. Spatial dispersion was the result of standard deviation of total x and y 
coordinates over study area, while the directional dispersion was standard deviation over 

Figure 3. Flowchart of VBD data application to detect spatiotemporal patterns of light fishing fleets distribution 
in West Sumatera Waters
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Effect of Environmental Parameters on Fleet Spatial Distribution

The relationship between spatial fish distribution and oceanographic parameters tends to 
be non-linear (Bertrand et al., 2004; França et al., 2012). Nevertheless, the prediction of 
PFZs is still carried out based on signs of biophysical conditions in the aquatic environment. 
It proves that it has a significant contribution to the influence of the fish distribution and 
fishing fleets distribution. The SST and chlorophyll-a are known as parameters widely 
used for PFZs analysis (Zainuddin & Saitoh, 2008; Lanz et al., 2009; Nurdin et al., 2017). 

The chlorophyll-a can determine water productivity and fish production even though 
the relationship is not direct (Bertrand et al., 2002). Lumban-Gaol et al. (2015) explained 
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𝐴 = �𝑥�𝑖 2 −�𝑦�𝑖   
2

𝑛

𝑖=1

𝑛

𝑖=1

   𝐵 =  �𝑥�𝑖 2−�𝑦�𝑖  2
𝑛

𝑖=1

𝑛

𝑖=1

2

+  4 �  𝑥�𝑖  𝑦�𝑖

𝑛

𝑖=1

2

     𝐶 =   2 �  𝑥�𝑖 𝑦�𝑖

𝑛

𝑖=1

x coordinates and standard deviation over y coordinates that represent of standard distance 
over the direction of x and y coordinates. Directional trends were the calculation of degree 
A, B, and C. Clear brief of this equation explained as follow:

Table 3 
Spatial indicators used in this study

Spatial 
Indicators Equations Spatial 

Scale
Time 
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Ecological 
Explanation
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light fishing 
fleets (spatial 
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Source: (Perzia et al., 2016)



Light Fishing Fleets Monitoring in West Sumatera Waters

335Pertanika J. Sci. & Technol. 28 (1): 327 - 351 (2020)

Table 4  

Materials, data units, descriptions and data sources

Data Type Data Source Description
Actual Fishing Data

Actual fishing 
data

Daily logbook of the hand line 
fishing

Bungus fishing port daily logbook 
datasheets

Environmental Data

Sea Surface 
Temperature 
(SST)

http://marine.copernicus.eu/

Monthly; The Global ARMOR3D L4 
dataset; data combination AVHRR, 
AMSR and in situ observation of NCDC 
NOAA; spatial resolution 0.25ox0.25o 

Chlorophyll-a 
concentration http://marine.copernicus.eu/ 

Monthly; PISCES biogeochemical 
model data, spatial resolution 
0.25ox0.25o; 

Light Fishing Data

VIIRS Boat 
Detection

https://www.ngdc.noaa.gov/
eog/viirs/download_boat.html

Daily; VBD data (VIIRS Boat 
Detection) level 3; spatial resolution 
(0.375 km – 1.6 km); scanning width 
3000 km

that the sea level and eddies current indirectly indicated good habitat for the feeding area.
The environment data were overlaid with the VBD’s geographical distribution to understand 
the daily and seasonal distribution patterns of the fishing fleet. The daily sample data were 
taken at the new moon phase in each month (every season) to ensure that the detected 
activity points have the best radiance intensities (Elvidge et al., 2015). More explanation 
on the type of data, unit of data, description, and source of data is shown in Table 4.

RESULTS AND DISCUSSION

Figure 4 shows the total fleets detected by VIIRS DNB at the pixel area (700 x 700 m). 
High value of detected fleet (5 to 36 units per pixel) dominantly were at the coast water 
of west Sumatera, Mentawai strait, and coast water of Bota Island at the southern part of 
study area. Low value of detected fleet (1 to 5 units per pixel) dispersed within the study 
area. This information represented fishing pressure at the study area based on light fishing 
fleets spatial distribution. Figure 5 shows the DNB radiance value that represents the light 
intensity detected from DNB Image. Both figures relate to the density of the light fishing 
activity and the dominant fishing gear types operated at that area. Higher radiance value 
suspected related to the fishing gear that utilized big amount of lights as FADs (Table 2). 
The light used at the fishing activities linearly correlated with the radiance value that was 
detected by VIIRS DNB Image.
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Figure 4. VBD data from 2014 - 2018 were rasterized with a resolution of 700 x 700 m (A) The number of 
VBD detected per pixel from 1780 nights and (B) Radiance values ​​for each VBD point detected

Figure 5. Central Fishing Area (CFA) and actual fishing fleets data in West Sumatera Waters during 2014-2018. 
(A) CFA and spatial density of the number of VBD/pixel (B) CFA and spatial density of radiance values/pixels
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The VBD in WSW indicates a variation in the spatial patterns, i.e., the number of VBD 
per pixel and radiance value per pixel. The number of VBD per pixel was dominantly 
seen in classes 1 to 2 VBD, while the class above 2 was dominant at coast waters and 
Mentawai strait. The dominant radiances have been seen in class that is smaller than 26.71 
nW/cm2/sr. The spatial pattern of the high radiances was consistent with the VBD's value 
per pixel, which tended to be in the coastal water areas (Figure 4).

Figure 4 shows that the spatial pattern of dominant radiance value < 9.03 nW/cm2/sr 
spread throughout the area, while the spatial pattern of radiance value > 9.03 nW/cm2/sr 
was dominantly located near the coast and straits of the study area. This due to < 10 GT 
vessels are generally lift net and mini purseseine that densely distributed in the coastal 
waters of west Sumatera. They predominantly used 5-40 lights as FADs, causing the value 
of detected radiances intensity greater and clearer in the coastal area. The difference in 
detected radiances intensity was highly related to the number of lights used in fishing 
activities (Hsu et al., 2019).

The radiance intensity was expressed in nW/cm2/sr for the boat detection. Actual 
radiance intensity data was expressed in W/cm2/sr that had seven to ten zeros after the 
decimal point before the start of significant digits. For better understanding, the W/cm2/sr 
was multiplied by billion and became nW/cm2/sr. This idea intended to produce number 
with one or two digits to the left of decimal point and a string of values to the right of the 
decimal point (Elvidge et al., 2015). High intensity of radiances represents high intensity 
light sources at sea. The high radiance distribution at coast water of west Sumatra explained 
that dominant fishing gear used at that area was boat lift net. Boat lift net is light based 
fishing gear that catches pelagic fish, operates at night and utilizes 30 – 60 light sources. 
At the center of Mentawai strait, radiance intensity became smaller due to long line, hand 
line and purse seine fishing activity.

The ability of VIIRS night imaging is very significant in improving the quality of 
night-time image results compared to its predecessor, the DMSP satellite in terms of 
radiometric resolution and spatial resolution; that is very important in the process of 
extracting information on vessel position through lights in the sea (Miller et al., 2013 & 
Elvidge et al., 2015). Another advantage of using VIIRS DNB data is VIIRS day/night 
band (DNB) collects low light imaging data 45 times smaller pixel footprint than the 
DMSP (Elvidge et al., 2013). Elvidge et al. (2015) explained that VIIRS DNB also had 
higher level of quantization, rigorous calibration, and additional spectral bands useful for 
cloud, ocean and combustion source characterization. Further, they stated that VIIRS had 
high capability of detecting vastly more lit fishing boat features when compared to DMSP. 

According to all of the advantages of VIIRS DNB data among DMSP, we assessed 
some fisheries study based on this datasets. VBD data is a new product that produced from 
VIIRS DNB data analysis. In this study, we performed VBD data to identify, delineate, 
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characterize and analyse the CFAs in WSW. The CFAs also compared with actual fishing 
position data to analyse how the CFAs relates to the actual fishing activities within 
study area.

CFA from VBD Data

The analysis of the VBD data (2014 - 2018) showed spatially different densities. 
The high-density radiance was more concentrated in coastal areas while low-density VBD 
numbers covered a wider area. This spatial density informed that the pressure of fishing 
activities at WSW tended to occur in the waters of the strait and coast (Figure 5). The 
pattern of the spatial density was used as an excuse to predict the causes of high fishing 
activities in these locations.

The pattern of spatial density was used as the basis for determining and identifying 
CFAs in WSW. Besides, it was also used to compare the spatial patterns of CFAs with the 
actual fishing data. The spatial interpretation was conducted to delineate the location of 
the CFAs. A total of 19 CFAs was identified in WSW (Figure 5) with varying areas and 
shapes (Table 5). The widest CFAs was recognized at CFAs No. 2 which reached 9813.74 
km2 in the coastal area of ​​the west coast of west Sumatra. The location of the CFAs 
extends from the south to the north near the strait of the Islands. The smallest CFAs was 
identified as CFAs No. 16 covering 29.50 km2 in ​​the northern coast of North Pagai Island 
or Pagai waters. It was PFZs for traditional fishers from the north and south Pagai Islands, 
predominantly using the boat and set lift net. All the extent of CFAs and the identification 
of each CFAs ​​are shown in Table 5.

The result of CFAs identification and actual data on hand line fishing determined that 
the actual point of hand line fishing was included in certain CFAs or associated with some 
CFAs. CFAs No 1, 5, 6, 8, and 19 were the most related CFAs to actual data. The highest 
intensity of the actual data was at CFAs No 6, which was at range of 99oE - 99.5oE and 
1oS - 2oS corresponding to the Mentawai Strait. The intensity of the fishing activities from 
the actual data was also high at CFAs No. 19, which was west of Sipora Island water. The 
CFAs data and identification results provided information related to the traditional PFZs 
at WSW. However, those CFAs intersect with the other conventional PFZs of fishing gear 
such as lift net, longline and purse seine which were also the dominant fishing gear used 
by fishers in the WSW (Harahap et al., 2018). Lift net, longline and purse seine PFZs were 
also used in certain zones around the Mentawai strait in the No.6 CFAs area.

CFAs data also are applied to identify tuna fishing centres, especially hand line fishing. 
The WPP 572 is also known as traditional PFZs for tuna fishing vessels, coming from 
Sibolga fishing port at north Sumatra, Bungus fishing port and Nizam Zachman fishing 
port at Jakarta. WSW is one of strategic traditional PFZs of hand line in west Sumatera 
in term of accessibility, productivity and connectivity. A traditional PFZs means that the 
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PFZs is determined by conventional methods, such as fishing habits, natural signs 
(flying birds, schooling dolphins, ripples on the sea surface) and foreign objects that 
float in the waters (Nurdin et al., 2010;  Nurdin et al., 2015; Nurdin et al., 2017). PFZs is 
always connected to a fishing base as the pre and post fishing activities base (fishing port) 
(Hsu et al., 2019). This result is still relevant to explain because fleets detected in the night-
time imagery are dominantly catching pelagic fish as well as hand line fishing vessels that 
catch yellow fin tuna. Yellow fin tuna distributes vertically near to water surface during 
the night, so it was possible to used lights as FADs for hand line.

Internal and external factors in fishing activities significantly influence the fishing 
locations base on types of fishing gear in WSW. Thus, the identification results were 
not representative to describe certain kinds of fishing gear (PFZs). Girardin et al. (2017) 

Table 5
Identification of Core Fishing Area (CFA n = 19) in the West Sumatera Waters 

CFAs No Extensive Estimation
(Km2) CFAs Description

1 3630.54 Bota Island strait
2 9813.74 West coast waters of West Sumatera
3 507.11 Mentawai strait I
4 307.32 Mentawai strait II
5 433.23 Off the east coast water of Siberut Island I
6 2729.01 Off the east coast water Siberut & Sipora Island
7 118.32 Mentawai strait III
8 380.47 Mentawai strait IV
9 617.64 North coast water of Siberut Island
10 314.89 Southwest coast water of Bota Island
11 921.29 West coast water of Bota Island
12 1276.93 Bunga Laut strait
13 305.86 Sipora strait
14 329.35 South coast water of South Pagai Island
15 226.41 Mentawai strait V
16 129.50 North coast water of North Pagai Island
17 720.20 Off the coast South Pagai Island
18 1082.20 Southern water of  Pagai Island
19 1338.26 Western water of Sipora Island

Source: Analysis of VBD and actual fishing data
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explained similar aspects, where the factors influenced Fisher's decision in choosing fishing 
locations and also projections of expenditure, estimation of risks, and habits in determining 
fishing areas. Furthermore, Geronimo et al. (2018) explained that environmental factors 
had a very high influence on the spatial structure of VBD detection results, especially in 
locations with high spatial density.

Moreover, the approach used the VBD data which could not distinguish certain types of 
fishing gear in waters. However, despite these shortcomings, the existence of information 
regarding the distribution of fishing activities that is openly accessible, made it possible 
to fill the gaps of data availability that can be used in  marine and fisheries management 
studies (Elvidge et al., 2015; Geronimo et al., 2018).

Geographic Distribution Estimation from VBD Data 

Table 6 reveals the results of the estimation of spatial indicators (central tendency, spatial 
dispersion, directional dispersion, and directional trends) which were estimated from 
the sample of daily data in 2014-2018. Dataset was selected in the day in the new moon 
phase to ensure the clearest intensity from ship's lights representing the vessels position 
(Elvidge et al., 2015). However, there were < 5 units of VBD data detected and causing 
the estimation of geographical distribution unsuccessful.

The daily VBD unit ranged from  0-200 units during the year. The highest VBD unit 
was detected in July 23rd, 2017 as many as 174 units (during the day in the southeast 
monsoon season). The lowest VBD units were 0 units on April 25th, 2017 (during a day 
in the transition I monsoon). Atmospheric and oceanographic conditions played the 
main role in determining the VBD unit at sea (Elvidge et al., 2015; Geronimo et al., 
2018).  The amount of VBD detected daily was very influential on the results of daily 
geographical distribution estimation per season in 2014-2018. Unsuccessful quantification 
of geographical distribution was caused by the presence of < 5 unit data at our dataset. 
The distribution pattern and unsuccessful quantification of geographical distribution are 
shown at Figure 6. 

Generally, the result confirmed that geographic distribution of light fishing fleets was 
wider during the northwest and southeast monsoon and became more compact at transition 
I and II monsoon. The variability of SST and chlorophyll-a concentration during different 
season influenced the geographic distribution of light fishing fleet at west Sumatera waters. 
Geronimo et al., (2018) reported that environment parameter as the main influence of the 
light fishing fleet distribution at sea. 

Table 6 shows the estimation results of the spatial indicators for the daily data per season 
in 2014–2018. The highest spatial value ​​of spatial dispersions was identified in the 2016 
northwest monsoon with a value ​​of 168.94 km. This value indicates a wider distribution 
of fishing activities in the study area. The same result was also identified in the spatial 
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indicator of directional dispersion in the same year for the x value ​​of 204.92 km, but the y 
value ​​did not necessarily has linear values ​​that increased against the value of x and spatial 
dispersion. The trend of the direction of distribution monitored from the estimation results 
showed the geographical orientation in the value range between 97.99o-171.48o. The value 
of spatial indicators was determined by fishing points dispersion at sea that influenced by 
oceanographic parameters, fishers skill, fishing season, and accommodation (Kaschner et 
al., 2006; Saraux et al., 2014; Perzia et al., 2016; Harahap et al., 2018 ). Furthermore, it 
can be seen in Table 6 that the fishing activities were more dispersed in the northwest and 
southeast monsoon, which was confirmed by the visual appearance in Figure 6.

The central tendency of the VBD distribution or fishing activities of the sample days in 
each season from 2014 to 2018 is shown in Figure 6. The central tendency on the sample 
day of the transition I and transition II was more spatially dispersed. It shows that some 
points located slightly far in the south and west. In the central tendency in the northwest 
and southeast monsoon, the sample data tended to be centred and shifted less in the study 
area, which is only concentrated at 99oE - 100oE and 0.5oS - 2oS (Figure 6 of mean centre). 
This is also clearly confirmed by the results of other spatial indicator estimations shown 
in Figure 6 and Table 6. The daily sample data showed variations in the distribution of the 
detected fishing activities based on vessel lights. The spatial pattern and estimation results 
represented the dynamics of fishing activities of the lighted fishing fleet at the WSW. 

The GIS approach has been widely applied in marine and fisheries studies, such as 
Perzia et al. (2016) in terms of monitoring of sword fishing activities and CPUE (Catch 
per Unit Effort) analysis; fisheries management planning (Close & Hall, 2006); fish pelagic 
distribution modelling (Saraux et al., 2014 & Harahap et al., 2018); and the relationship 
between environmental parameters and fish distribution (Kaschner et al., 2006). The GIS 
enables more dynamic and efficient management (fisheries and marine spatial) of data 
with the methods that are flexible regarding storage and processing (Perzia et al., 2016). 
The GIS-based analysis proved that it could be an alternative approach for marine and 
fisheries resources management.

Table 6
Spatial indicator values ​​of daily geographical distribution per season 2014-2018

Object 
ID Seasons Spatial 

Dispersion (km)

Directional 
Dispersion x 
(km)

Directional 
Dispersion 
y (km)

Directional 
Trends (o)

1.14
Northwest 
Monsoon 147.89 160.69 133.86 156.59

1.15
Northwest 
Monsoon 124.57 160.34 72.99 150.65
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Table 6 (Continued)

Object 
ID Seasons Spatial 

Dispersion (km)

Directional 
Dispersion x 
(km)

Directional 
Dispersion 
y (km)

Directional 
Trends (o)

1.16
Northwest 
Monsoon 168.94 204.92 122.84 109.95

1.17
Northwest 
Monsoon 110.21 135.07 77.76 123.47

1.18
Northwest 
Monsoon 104.57 127.86 74.30 132.85

4.14 Transition I 101.69 132.07 56.92 130.09
4.15 Transition I 0.00 0.00 0.00 0.00
4.16 Transition I 127.61 139.84 114.07 157.46
4.17 Transition I 0.00 0.00 0.00 0.00
4.18 Transition I 0.00 0.00 0.00 0.00

7.14
Southeast  
Monson 160.61 138.95 179.68 70.04

7.15
Southeast  
Monson 89.29 95.63 82.46 171.48

7.16
Southeast  
Monson 172.05 216.65 110.76 97.99

7.17
Southeast  
Monson 102.37 118.52 83.14 127.70

7.18
Southeast  
Monson 156.57 213.05 60.32 144.10

10.14
Transition 
II 112.25 122.45 101.03 124.88

10.15
Transition 
II 0.00 0.00 0.00 0.00

10.16
Transition 
II 65.15 91.53 10.61 142.63

10.17
Transition 
II 123.88 160.21 70.89 154.71

Note: Object ID (Month.Year)  (1.14)  (January 2014)
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Figure 6. Map of VBD daily distribution per season from 2014 to 2018. Spatial dispersion (circles), directional 
dispersion, directional trends (ellipses), and mean centre (centre of fleet concentration from daily VBD per 
season). (A) Northwest monsoon, (B) Transition I, (C) Southeast monsoon, (D) Transition II

Environmental Parameters against Geographical Distribution

According to Siregar et al. (2018), the SST distribution in Indian Ocean is relatively warm 
with an average 28°C and cooler in southern part during the northwest monsoon so the 
north and south equatorial currents strengthen westward. SST gets warmer during transition 
I with value around 29oC and become colder in southeast monsoon because of the surface 
wind circulation pattern both in the northern hemisphere and southern hemisphere showing 
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regular patterns. During the transition II season, SST begins to get warmer due to weak 
wind circulation, the north equatorial current does not move yet causing colder SST at 
southern hemisphere of Indian Ocean. Chlorophyll-a concentration at western Sumatera 
waters consistently high at the west coast of Sumatera and at the southern area near Bota 
Island. Changes in current, wind, and atmospheric event influence the distribution of 
chlorophyll-a concentration at western Sumatera. 

The variability of SST and chlorophyll-a concentration during different season 
influences the geographic distribution of light fishing fleet at west Sumatera waters. Figure 
7 and 8 visually show that the geographical distribution of fishing fleets detected through 
VBD was very random spatially. In general, the VBD detection spread over a range of 
SST values ​​between 27oC-32oC and chlorophyll-a concentration between 0.007 mg/m3 to 
0.42 mg/m3. The lowest value of SST occurred in the northwest monsoon month in 2014 
at a value of 27.96oC, and the highest occurred in the transition II in 2014 at the value of 
31.99oC.

Meanwhile, the lowest value of chlorophyll-a concentration occurred in the southeast 
monsoon months and the first transition in 2014 at a value of 0.007 mg/m3, with the 
highest value observed in the northwest monsoon in 2017 at 0.42 mg/m3. Those parameters 
influenced fisheries distribution and determined fish habitat preferences. It is supported by 
the results of Nurdin et al. (2017) that mackerel preferred habitat at SST between 26.05oC - 
31.97oC, with a chlorophyll-a concentration between 0.001 mg/m3-0,1 mg/m3. Siregar et al.  
(2018) also reported that range of SST preferences around 29oC – 29.5oC for yellow fin tuna 
species, chlorophyll-a concentration value in range between 0.15 – 0.25 mg m-3.  Harahap 
et al. (2018) also reported that variability of SST at range 29 – 31oC and chlorophyll-a 
concentration varied between 0.10 – 0.40 mg/m3 were the main range related to the pelagic 
fish distribution at west Sumatera Waters. Chlorophyll-a concentration is a parameter that 
can indirectly determine water productivity and fish production. Thus, it is widely used 
in studies related to the determination of fish habitat preferences (Bertrand et al., 2002).

The geographical distribution pattern in the northwest monsoon was consistent with 
the directional dispersion (ellipse) and the standard dispersion (circles) patterns and 
had the same model and direction at x and y. From 2014 to 2017 for all seasons, the 
lowest distribution occurred in the southeast monsoon 2017 with an SST range between 
29.22oC-31.52oC.  Widest distribution occurred in the transition II 2015, where the VBD 
was detected in the Mentawai strait, and extended along the west coast of west Sumatra 
to the straits of Bota Island.

High SST was monitored at the northwest position of Bota Island and tended to be 
medium and low on the west coast of west Sumatra (Figure 7), where fishing activity was 
monitored to be dense from the results of boats detection. This spatial pattern was consistent 
with the distribution of chlorophyll-a, which was high on the coast (Figure 8). The highest 
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geographical distribution occurred in the second transitional season in 2015. The VBD 
points were detected spread and consistent towards the high distribution patterns of the SST 
in the west of Mentawai waters and on the west coast of West Sumatra. This distribution 
pattern was inconsistent with the spatial distribution patterns of the chlorophyll-a 
concentration that was high on the west coast to the south near the Pagai Islands.

Wyrtki (1961) stated that monsoons strongly influenced the circulation of the eastern 
Indian Ocean. The monsoon winds moving throughout the year affected the speed and 
direction of the sea surface, not apart from the waters of West Sumatra. Changes in wind 
direction occurred throughout the year would affect the course of the flow and movement 
of water masses in the Eastern Indian Ocean (EIO). It also influenced the variability of 
oceanographic parameters in the WSW, including sea surface temperature and chlorophyll-a 
concentration.

Figure 7. Monthly VBD distribution per season (northwest monsoon = January, transition I = April, southeast 
= July, transition II = November; consecutive left-to-right rows) in 2014-2017 (consecutive top-down column) 
on the spatial distribution of sea surface temperature (SST) in the West Sumatera Waters
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Figure 8. Monthly VBD distribution per season (northwest monsoon = January, transition I = April, southeast 
= July, transition II = November; consecutive left-to-right rows) in 2014-2017 (consecutive top-down column) 
on the spatial distribution of chlorophyll-a concentrations in West Sumatera Waters

CONCLUSION

The distribution of the VBD per pixel > 5 VBD/pixel was dominant in coastal waters, 
including the west coast of West Sumatra, the strait of the Bunga Sea and the coastal waters 
of Bota Island. The spatial pattern of the radiances showed that the value < 9.03 nW/cm2/sr 
was dominantly spread out throughout the study area. The spatial models of the radiance 
values > 9.03 nW/cm2/sr were dominant in waters near the coast and strait. This pattern was 
consistent with the spatial density, which was high in specific locations identified as CFA 
in this study. The largest CFA was recognized in CFA 2 with an area reaching 9813.74 km2 
in the waters of the West Sumatra coast. The CFA location extends from the south to the 
north near the straits of Bota Island. The smallest CFA was identified as CFA 16 covering 
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an area of ​​129.50 km2 which was an area of north coast ​​waters of northern Pagai Island 
or the waters of Pagai Island.

The highest spatial dispersion values ​​were identified in the sample days in the northwest 
monsoon (2016) with a value of 168.94 km2, indicates the wider distribution. The same 
results were also identified in the directional dispersion in the same year for x values ​​of 
204.92 km2, but for y values, ​​it did not linearly increase with the value of x and spatial 
dispersion. The directional trend of the distribution monitored from the estimation results 
showed the geographical orientation in ranging from 97.99o to 171.48o. The geographic 
distribution of light fishing fleets were in the SST between 27oC-32oC with chlorophyll-a 
between 0.007 mg/m3 to 0.42 mg/m3. The tendency of the geographical distribution of the 
fleet was dominant in coastal and strait waters.
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